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Abstract

Soil moisture is important information in semiarid rangelands where vegetation growth is heavily dependent on the water availability.

Although many studies have been conducted to estimate moisture in bare soil fields with Synthetic Aperture Radar (SAR) imagery, little

success has been achieved in vegetated areas. The purpose of this study is to extract soil moisture in sparsely to moderately vegetated

rangeland surfaces with ERS-2/TM synergy. We developed an approach to first reduce the surface roughness effect by using the temporal

differential backscatter coefficient (Drwet – dry
0 ). Then an optical/microwave synergistic model was built to simulate the relationship among

soil moisture, Normalized Difference Vegetation Index (NDVI) and Drwet-dry
0 . With NDVI calculated from TM imagery in wet seasons and

Drwet – dry
0 from ERS-2 imagery in wet and dry seasons, we derived the soil moisture maps over desert grass and shrub areas in wet seasons.

The results showed that in the semiarid rangeland, radar backscatter was positively correlated to NDVI when soil was dry (mv < 10%), and

negatively correlated to NDVI when soil moisture was higher (mv>10%). The approach developed in this study is valid for sparse to

moderate vegetated areas. When the vegetation density is higher (NDVI>0.45), the SAR backscatter is mainly from vegetation layer and

therefore the soil moisture estimation is not possible in this study.
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1. Introduction angles is less affected by roughness and vegetation (Schmul-
Microwave remote sensing is sensitive to soil moisture

because its dielectric constant, which is mainly related to

moisture, is one of the most important factors in radar

backscatter intensity. However, radar backscatter is not

linearly related to soil moisture. It is also influenced greatly

by soil roughness, vegetation amount, structure, and system

parameters such as incidence angle and frequency. Sano et al.

(1998a) reported that the sensitivity of Synthetic Aperture

Radar (SAR) data to soil moisture varied significantly at

different roughness scales. Depending on the frequency and

incidence angle, radar backscatter coefficients (r0) could

vary up to 22 dB due to surface roughness variation (Ulaby

et al., 1978). The changes in r0 due to the variation in

vegetation cover could be as high as 15 dB (Dobson &

Ulaby, 1986). SAR imagery acquired with steeper incidence
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lius & Evans, 1997). P-band (68-cm wavelength) backscatter

is less affected by vegetation geometry, but the attenuation

of canopy in C-band (5.8 cm) may be too strong to monitor

soil moisture with monotemporal data (Wever & Henkel,

1995).

A number of models have been developed to map soil

moisture distribution with SAR data. Most models utilized

multipolarization features and have been applied primarily

to bare soil fields (Dubois et al., 1995; Oh et al., 1992; Shi et

al., 1997). The success of these modeling approaches is

primarily due to the capability of longer wavelengths and

multiple polarizations of the data with which the roughness

effect is less dominant (Chen et al., 1995). However, these

data could only be acquired from the sensors on space

shuttles, airplanes or trucks that are limited in space and

time (Sano et al., 1998b). The widely available SAR data

from spaceborne sensors like ERS (C-VV) and JERS (L-

HH) are single frequency and single polarization, and

therefore cannot be applied in these models. Moreover,



Fig. 1. Land cover map of the study area. Three study sites: Creosote,

Tobosa, and Sacaton are labeled in the map.
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the accuracy of these models is significantly reduced when

applied to vegetated surfaces (Taconet et al., 1996). Because

most areas where the water availability is of great impor-

tance are covered by vegetation, the use of the satellite data

in soil moisture estimation is thus limited. Using multi-

temporal ERS data in wintertime when the vegetation effect

was minimal, Verhoest et al. (1998) examined the surface

‘‘wetness’’ pattern by relating the surface drainage informa-

tion to the second principal component in a principal

component analysis. However, because this component only

accounted for 6.6% of the total variance, it was difficult to

quantify the soil moisture when the surface roughness effect

was not considered.

One of the main challenges in soil moisture estimation

using the single-frequency, single-polarization SAR data is

to remove/reduce surface roughness effect. In studies over

small areas, the roughness condition [root mean square

(rms) height and correlation length (cl)] could be approxi-

mated with intense ground measurements and simulations.

However, it is too time consuming to be applied over large

areas. In most soil moisture estimation models, surface

roughness is characterized by autocorrelation functions for

the surface profile (Ulaby et al., 1982). Over large areas, a

single function is often too simple to fully represent the

surface roughness conditions. In areas such as semiarid

rangelands where roughness changes little with time, the

difference of multitemporal SAR data may provide ways to

reduce the roughness effect.

Another challenge in soil moisture estimation is to reduce

the effect of vegetation atop a soil surface. Although radar

signals may penetrate vegetation, the interpretation of sur-

face backscatter is often difficult because of the interactions

between vegetation and underlying soils. Optical remote

sensing has been widely used to derive information of

vegetation properties such as fractional cover and green

leaf area index (Jasinski & Eagleson, 1990; Qi et al., 2000).

The Normalized Difference Vegetation Index (NDVI) is

almost linearly related to vegetation abundance at lower

density (Qi et al., 1994) and therefore, can represent the

vegetation effect in soil moisture estimation.

The objective of this study is to investigate the feasibility

of estimating soil moisture by synergistic use of multi-

temporal ERS-2 and TM images. In this study, an optical/

microwave synergistic model was built and the relationships

between soil moisture, roughness, and NDVI were simulat-

ed. The model was then applied to map soil moisture

distribution in sparsely to moderately vegetated semiarid

rangelands.
2. Study area and data set

The experimental area of this study is in the San Pedro

River basin in southeast Arizona, USA. Due to the limita-

tion of image acquisition, only a subset of the basin nearby

Tombstone is selected, covering an area of approximately
400 km2. A land cover map (Fig. 1) of the study area was

made with supervised classification techniques over an

ETM+ image acquired in September 1999. The accuracy

of classification was around 90% (Wallace et al., 2003). The

dominant vegetation types in the study area are long-leaf

desert grasses, small elliptic-leaf desert shrubs, and mes-

quites mixed with cottonwood along the San Pedro River.

The dense vegetation cover of mixed mesquites attenuates

SAR signals and, therefore, highly reduces the backscatter

intensity from underneath soils. Only grass and shrub areas

were used in this study.

Three study sites were selected and each site was

characterized primarily by one of the three vegetation types:

Sacaton (Sporobouis wrightii), Creosote (Larrea tridentata),

and Tobosa (Hilaria mutica). Both Sacaton and Tobosa

belong to desert grass, while Creosote is typical desert

shrub. Each study site had an area of 90� 90 m. The GPS

readings in the center of the site were recorded during

fieldwork. In situ soil moisture measurements were made

on days when ERS-2 overpassed (Table 1). Within each

study site, a 6� 6 grid was laid out with an interval of 15 m

in both x and y directions. At each time of the overpass, one

soil sample was collected at each corner of the grids. The

soil moisture at this study site was statistically represented

by these 49 (7� 7) samples.

Fine sandy loam (often with gravel or cobbles) is the

predominant soil texture in this area. Except some isolated

mountain areas, the study area is mostly composed of fan

terraces mixed with fan alluvium of 0–15% slopes (Soil

Survey, 1996). Therefore, the topographical effect on radar

backscatter is not accounted for in this study. The average

surface soil roughness is 0.53F 0.15 in grass dominant sites

and 0.55F 0.23 in shrub dominant areas (Moran et al.,

2000).



Table 1

In situ soil moisture measurements at the study sites (Moran et al., 2001)

Date DOY (day of year) Volumetric soil moisture Notes

Sacaton Creosote Tobosa

01/12/97 012 (winter wet) 28.2F 5.1 9.0F 1.4 19.3F 6.1 It snowed in early January, and the snow had

melted by the time of the ERS-2 overpass.

03/23/97 082 (spring dry) 7.3F 4.3 1.1F 0.8 3.7F 1.1 There was minimal rain in March, and the soil

conditions were moderately dry.

07/06/97 187 (end of spring dry) 3.1F1.1 0.7F 0.2 2.2F 0.6 During the hot months of May and June, the

soil at all sites was very dry.

09/14/97 257 (summer monsoon) 13.8F 5.0 3.8F 1.1 7.0F 2.6 A small storm preceded the September overpass.
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The climate seasonal characteristics in the San Pedro

River basin include a summer monsoon season from early

July to mid-September, a fall dry season from mid-Septem-

ber to mid-December, a winter wet season from mid-

December to March, and a spring dry season from April

to June. Approximately 25% of the annual precipitation

occurs in the winter as widespread snow or soaking rains,

while 75% of the precipitation is in the summer as isolated,

short duration, heavy thunderstorms.

In this study, four pairs of ERS-2/TM data were acquired

in three seasons in 1997 (Fig. 2). The first pair, ERS-2

(DOY187)/TM (DOY191), was acquired at the end of

spring dry season. The second pair, ERS-2 (DOY257)/TM

(DOY255), was in summer monsoon season. The third pair,

ERS-2 (DOY012)/TM (DOY015), was in winter wet sea-

son, and the fourth pair, ERS-2 (DOY082)/TM (DOY079)

was in spring dry season. These four pairs of data formed

two wet–dry data sets: DOY257–DOY187 and DOY012–

DOY082. The duration of each wet–dry data set was less

than 3 months and therefore, the change of soil roughness
Fig. 2. Paired ERS-2/TM images of the study area in three seasons in 199
and vegetation structure between wet and dry seasons was

assumed minimal.

For each image pair, the TM image was geometrically

corrected with ground control points, and the ERS-2 image

was georeferenced to TM. The cloud/shadow and isolated

mountain areas in each pair were masked out in the analysis.

The atmospheric effect on TM images was corrected using a

refined empirical line approach (Moran et al., 2001). The

backscatter coefficient (r0) of ERS-2 images was calculated

with the equations from the European Space Agency.
3. Approach

In this study, we first build an optical/microwave syner-

gistic model to simulate radar backscatter from a vegetated

surface. Second, the ratio of backscatter in wet and dry soil

surfaces is calculated to reduce the roughness effect. Third,

the temporal differential backscatter coefficient (Drwet-dry
0 ) is

modeled as a function of NDVI with random soil roughness
7: winter wet, spring dry, end of spring dry, and summer monsoon.
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values to examine the vegetation effect. The relationships

among soil moisture, NDVI, and Drwet–dry
0 are also exam-

ined using the model simulation. Finally, the NDVI from

TM in wet seasons and Drwet–dry
0 from ERS-2 in wet and

dry seasons are used to establish a series of isomoisture lines

and then to map soil moisture distributions in wet seasons.

3.1. An optical/microwave synergistic model

In desert grass areas, the radar backscatter results pri-

marily from leaf canopy and underneath soil. In shrub areas,

the radar backscatter results from leaf canopy, stem/branch,

and underneath soil. However, it is assumed that the stem/

branch contribution remains less dominant because they are

similarly dry in wet and dry seasons. When Drwet–dry
0 in wet

and dry seasons is used, the stem/branch contribution in

total backscatter is assumed to cancel out in the first-order

radiative transfer solution. It is also assumed that the

moisture of the leaves of desert grass and shrub is constantly

high in wet seasons and low in dry seasons. Under these

assumptions, both grass and shrub areas in wet season can

be modeled as a single homogeneous canopy layer atop a

soil surface. The canopy layer is composed of small elliptic

scatters characterized by their orientation probability distri-

bution functions (Table 2). The scatters of each vegetation

type have constant dielectric characteristics, size, orientation

probability distribution, and layer height. The soil under-

neath is modeled as a continuous surface on which the radar

backscatter is determined primarily by soil roughness and

moisture. The surface in dry season is assumed to be bare

surface.
Table 2

Input parameters of the optical/microwave synergistic model

General parameters

Wavelength (cm) 5.3

Incidence zenith angle (j) 23

Incidence azimuth angle (j) 0–360

Vegetation parameters Grass Shrub

Total number of layers 1 1

Total number of leaf

groups/layer

1 1

Leaf longer semiaxis (cm) 10 0.7

Leaf shorter semiaxis (cm) 1 0.6

Leaf depth (cm) 0.05 0.05

Leaf dielectric constant 15.4–9.5i 15.4–9.5i

Layer height (cm) 30 50

Leaf PDF function sin2h 2(1 + cos2h)/p
NDVI series for modeling 0.1 (bare), 0.15,

0.2, 0.3, 0.4,

0.5, 0.6

Soil surface parameters 100 points in 100 points in

rms height series for

modeling (cm)

(0.38,0.68) (0.32,0.78)

Soil moisture series

for modeling (%)

1, 5, 10, 15, 20, 25, 30, 35, 40
The microwave canopy scattering model developed by

Karam et al. (1992) divides the radar backscatter on the

vegetated surface into three parts: volume scattering from

leaf canopy rleaf, double bounce between vegetation ground

rdoubleb, and direct soil surface backscatter rsoil. The inten-

sity of double bounce from desert grass and shrub canopy is

much lower than other scattering. The model can be written

as (in power unit):

r ¼ rleaf þ rdoubleb þ s2rsoil ð1Þ

where s is the attenuation factor in either forward or

backward direction:

s ¼ e�kH=cosh ð2Þ

where H is the canopy height. The extinction coefficient (k)

is the total extinction cross section of all leaves statistically

averaged over the leaf orientation probability distribution.

For VV polarization,

k ¼ 4pN
k0

ImhFvvi ð3Þ

where k0 is the wave number. Fvv is the VV component of

the scattering matrix, or scattering amplitude tensor, of a

single leaf. N is the leaf number density (No./m3).

Two modifications to Karam et al.’s (1992) model are

made in this study. The first one is to introduce an IEM bare

surface scattering model into Karam et al.’s (1992) canopy

scattering model. The second one is to link the model to

optical remote sensing variables.

In Karam et al.’s (1992) model, the rsoil in Eq. (1) is a

very simplified first-order solution of radiative transfer

equations, assuming the soil as a continuous and slightly

rough dielectric surface. It is thus insufficient to simulate

radar backscatter under various soil roughness and moisture

conditions. An IEM model developed especially for bare

surface scattering with a wide range of roughness and

wetness (Fung et al., 1992) is used to replace the rsoil in

Karam et al.’s (1992) model. This replacement would allow

more realistic soil moisture contribution in total backscatter

of Eq. (1).

Let a and b be the half-length and half-width of an

elliptic leaf, respectively, the leaf density number N in Eq.

(3) can be related to the leaf area index (LAI) by:

N ¼ LAI

pabH
ð4Þ

In semiarid rangelands, the LAI can be estimated from

NDVI that is derived from optical remote sensing data like

TM imagery (Qi et al., 2000):

LAI ¼ 18:99NDVI3 � 15:24NDVI2 þ 6:124NDVI� 0:352

ð5Þ

By replacing the simple soil scattering model with the IEM

model and linking some vegetation parameters to optical

data, an optical/microwave synergistic model is then devel-



Fig. 3. Sensitivity of e% to roughness (a) and mv (b) with the variation in

NDVI.
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oped to simulate scattering from vegetated surfaces. The

input parameters of this model are listed in Table 2. Only

VV backscatter in C-band with incidence angle 23j is

modeled in consistence with ERS-2 configuration.

3.2. Roughness reduction

Combining rleaf and rdoubleb as rveg, Eq. (1) becomes:

rwet ¼ rveg þ s2rsoil�wet

rdry ¼ rsoil�dry ð6Þ

In the IEM model, except for very smooth or very rough

surface conditions, the first-order backscatter due to rough-

ness and volumetric soil moisture content (mv) are approx-

imately multiplicative (Fung et al., 1992). Assuming that the

soil surface in dry season is constantly dry, the soil back-

scatter in wet and dry seasons can be described as (in power

unit):

rsoil�wet ¼ f1ðroughnessÞf2ðmvÞ
rsoil�dry ¼ f1ðroughnessÞ 	 C ð7Þ

where f1(roughness) and f2(mv) are functions of roughness

and moisture, respectively. C is related to the soil moisture

that is assumed to be constant in dry season. The ratio of

total backscatter in Eq. (6) then becomes:

rwet

rdry

¼ s2f2ðmvÞ þ
rveg

f ðroughnessÞ ð8Þ

From Eqs. (2)–(6), the attenuation factor s is a function of

NDVI from optical data in wet season. For sparse vegetation

in rangelands, the second term in Eq. (8) is small. When

vegetation density is higher, rveg is higher. For smooth to

medium rough surfaces such as semiarid rangelands,

f1(roughness) has a range of variation which makes the

second term in Eq. (8) small but unable to be determined. It

can be treated as an error term e. Then Eq. (8) can be

rewritten as (in power unit):

rwet

rdry

¼ f ðmvÞgðNDVIÞ þ e ð9Þ

The error term e changes with the variation in vegetation

and soil roughness. Define e% as the ratio of e to the

differential backscatter rwet/rdry, the magnitude of e in Eq.

(9) is examined with various NDVI, soil moisture mv, and

roughness values (Fig. 3). The value of e is around 5% for

sparse vegetation and 30% for dense vegetation atop soil

surfaces with medium roughness and moisture conditions.

The magnitude of e is lower when soil is rougher (Fig. 3a) or
soil moisture is higher (Fig. 3b). Fig. 3 indicates that the

differential approach is valid for vegetated surfaces with low

to medium vegetation cover. When vegetation is denser

(e.g., NDVI>0.5), the e is dominant and Eq. (9) is no longer

valid.
Define the dB value of rwet/rdry as differential backscat-

ter coefficient Drwet–dry
0 , Eq. (9) can be rewritten as (in dB

value):

Dr0
wet�dryif VðmvÞ þ gVðNDVIÞ þ eV ð10Þ

Here both mv and NDVI is in wet season. Eq. (10) indicates

that Drwet–dry
0 is contributed additively from soil moisture

and vegetation properties. The error term eV in Eq. (10) is

related to e in Eq. (9) which accounts for the variation in

vegetation and soil roughness. Because eV is much less

dominant than the other two terms, the roughness effect has

been effectively reduced in this model.

The model is tested with paired TM/ERS-2 images and

ground measurements at three study sites (Fig. 4). One

Drwet–dry
0 set is modeled with soil moisture measured in

both wet and dry seasons. Another Drwet–dry
0 set is derived

from ERS-2 images. NDVI is retrieved from TM images in

wet seasons. The soil moisture of Creosote in dry season

(1.1% in DOY082 and 0.7% in DOY187) is replaced by 3%

(the average of the soil moisture measurements in dry

season) because the modeled backscatter with such low



Fig. 4. Scatterplot of modeled and image derived Drwet – dry
0 in two wet

seasons (summer monsoon and winter wet) at three study sites. The 1:1 line

is labeled on the plot.
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moisture is unreasonably low. In the scatterplot of the

modeled and image-derived Drwet–dry
0 in Fig. 4, all points

are distributed along the 1:1 line. The modeled Drwet–dry
0 is

highly correlated to image derived Drwet–dry
0 with R2 = 0.64.

The feasibility of the differential approach to reduce

roughness effect is also tested by examining the sensitivity

of image derived r0 and Drwet–dry
0 to ground measured soil

moisture. To be scaling comparable, both r0 and Drwet–dry
0

are normalized to (0,1). The relationship between normal-

ized r0 (and Drwet–dry
0 ) and mv at three study sites in two

wet seasons is shown in Fig. 5. It is obvious that before the

subtraction, the correlation between r0 and mv is very weak.

One of the primary reasons is the soil roughness effect.
Fig. 5. Normalized r0 (Drwet – dry
0 ) –mv relationships before and after

roughness reduction at three study sites in summer monsoon and winter wet

seasons. The r0 and Drwet – dry
0 are normalized to (0,1) for the scaling effect.
When the subtraction is applied, Drwet–dry
0 correlates well

with soil moisture (R2 = 0.63) and most data points move

closer to the correlation line, indicating that the roughness

effect has been reduced. Among three sites in two wet

seasons, only the Sacaton site in summer monsoon season

(mv = 13.8%) is controversial, at which Drwet–dry
0 is moving

away from the correlation line. This will be explained later.

3.3. Drwet –dry
0 –NDVI relationships

The Drwet–dry
0 –NDVI relationships described in Eq. (10)

are explored with model simulation and image observations.

Fig. 6a is a scatterplot of Drwet–dry
0 fNDVI observed in

ERS-2 and TM imagery in summer monsoon season

(DOY257). The Dr257 – 187
0 image is geocorrected and

resampled to the same pixel size (28.5 m) as TM (DOY255)

to ensure that pixels from both images correspond to the same

locations on the ground. The data points are randomly
Fig. 6. Scatterplots of observed (a) and modeled (b) Drwet – dry
0 –NDVI in

grass and shrub areas in summer monsoon season. The 95% upper and

lower confidence levels and six ground-measured points in three sites in

two wet seasons are shown in (b).
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selected in grass and shrub areas. A 3� 3 moving window is

used to reduce autocorrelation and speckle effects in ERS-2

images. To avoid cloud/shadow and other ground conditions

(such as water bodies and buildings), data points with

NDVI < 0.1 are not used in this plot. Fig. 6a suggests two

trends of the relationships that Dr257–187
0 is either positively

or negatively related to NDVI. The value of Dr257–187
0 is

higher than 0 dB in the positive trend and lower than 0 dB in

the negative trend.

The Drwet–dry
0 –NDVI relationships are also simulated

using the optical/microwave synergistic model in grass and

shrub areas. For either grass or shrub, the general parameters

and most of the vegetation parameters do not change (Table

2). NDVI has 7 values from 0.1 to 0.6. Soil moisture has 9

values from 1% to 40%. One hundred (100) soil root mean

square (rms) height values are randomly selected in the

range of (0.38,0.68) with a mean of 0.53 for grass, and in

the range of (0.32,0.78) with a mean of 0.55 for shrub areas.

Soil correlation length (cl) is calculated assuming rms slope
ffiffiffi

2
p

	 rms=cl ¼ 0:1. Each symbol in Fig. 6b is a modeled

Drwet–dry
0 value with one NDVI and soil moisture averaged

over 100 roughness conditions. The modeled Drwet–dry
0 –

NDVI confirms the trends shown in Fig. 6a. The

symbols form nine isomoisture series. The 95% upper

and lower confidence levels for each series are also

drawn in Fig. 6b.

In this differential approach, the soil moisture in dry

season is assumed to be constant. Choosing a different value

of this constant affects the Drwet–dry
0 values but not the shape

in Fig. 6b and consequently the soil moisture distribution in

wet season. In this study, a value of 10% is assumed to be the

soil moisture in dry season. The Drwet–dry
0 values of mv = 1%

and mv = 5% isomoisture lines are less than 0 dB because

their soil moisture values are less than 10%. This agrees with

the lower part of Fig. 6a. Because the soil moisture in

summer monsoon season depends on the isolated precipita-

tion, there may have some areas with lower soil moisture

than in dry season. Therefore, The Drwet–dry
0 values are less

than 0 dB in these areas.

The Drwet–dry
0 –NDVI trends in Fig. 6 are the result of

different contribution from vegetation and soil underneath.

Dobson and Ulaby (1998) reported that, from a nonflooded

soil surface, marsh grass was primarily an attenuator of the

radar backscatter. The r0 values decreased with the increas-

ing biomass, even when the volumetric soil moisture was as

low as 10%. Only in the flooded area would r0 increase with

biomass. These results are consistent with the upper trend in

Fig. 6 where Drwet–dry
0 decreases with the increase of NDVI.

For the lower trend in the plot, however, our data show an

increase in backscatter with increasing NDVI under non-

flooded conditions. It was found by Wang et al. (1994) that

when biomass was less than 1.0 kg/m2, as the surface soil

moisture decreased, the major contribution changed from

soil surface backscatter to canopy volume scatter. It indicates

that even under the situation of low vegetation density, when

soil surface is dry, the primary contributor is canopy and,
therefore, backscatter will increase with increasing NDVI.

This is consistent with the lower trend in Fig. 6.

As discussed earlier, soil roughness effect is reduced

when differential backscatter coefficient Drwet–dry
0 is ap-

plied. The variation of backscatter in Fig. 6 is thus primarily

due to the vegetation abundance and soil moisture. When

Drwet–dry
0 is negatively correlated to NDVI, soil moisture is

high and has dominant contribution to the radar backscatter.

In this case, at a given soil moisture value, the increase in

Drwet–dry
0 due to increasing vegetation does not compensate

for the soil backscatter decrease due to attenuation. There-

fore, Drwet–dry
0 decreases with increasing NDVI. In contrast,

when Drwet–dry
0 is positively correlated to NDVI, soil is dry

and vegetation is the dominant contributor. Consequently,

Drwet–dry
0 increases with increasing NDVI. For data points

in the center of the plot (around Drwet–dry
0 = 0), when NDVI

increases, the decrease in soil backscatter due to attenuation

is compensated by the increase of vegetation backscatter.

Thus, there is little change in Drwet – dry
0 when NDVI

increases.

3.4. Isomoisture lines

For each NDVI in Fig. 6, the vertical variation in

Drwet –dry
0 is mainly due to soil moisture. The vertical

variation decreases as NDVI increases because the attenu-

ation by vegetation is higher, indicating that the sensitivity

of SAR backscatter to soil moisture decreases with increas-

ing NDVI. Moran et al. (1997) found that SAR backscatter

was sensitive to soil moisture in cotton fields only when

NDVI < 0.45. It is also shown in Fig. 6 that when NDVI is

higher, the Drwet–dry
0 –NDVI relationships become saturat-

ed. The 95% confidence levels in Fig. 6b overlap when

NDVI>0.45. Most of the NDVI values of desert grass and

shrub are around 0.1–0.3. Only very few pixels can reach

0.45 or higher in the study area. The mixed mesquite areas

have much higher NDVI values and therefore are not

included in this study.

As shown in Fig. 6b, for each soil mv value, there is one

Drwet–dry
0 –NDVI isomoisture line. The Drwet–dry

0 –NDVI

trend is positive when mv < 10% and negative when

mv>10%. When soil moisture is around 10%, there is little

change in Drwet–dry
0 when NDVI increases. It also shows

that when NDVI is higher, due to the increasing vegetation

backscatter, the variation of Drwet–dry
0 in each isomoisture

line is higher and the distance between upper and lower 95%

confidence levels is longer. This is consistent with the error

e in Eq. (9). When vegetation density is high, the e due to

the vegetation backscatter becomes high. When NDVI is

higher than 0.45, the isomoisture lines are too close to each

other. This approach is no longer valid.

A rangeland surface with 5% soil moisture or lower is

very dry and has little green vegetation. In fact, most of the

rangeland surfaces in wet season should have soil moisture

higher than 5%. In contrast, the surface with 30% soil

moisture or higher is wet and provides adequate water for
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vegetation growth. A series of soil moisture equations in the

study area are regressed from the modeled Drwet–dry
0 –NDVI

results (all regressions have R2 larger than 0.96).

mv <¼ 5% : Dr0
wet�dryV36:59NDVI3 � 46:84NDVI2

þ 19:87NDVI� 3:80

5% < mvV10% : Dr0
wet�dryV� 1:14NDVIþ 0:04

10% < mvV15% : Dr0
wet�dryV7:57NDVI2 � 8:75NDVI

þ 2:23

15% < mvV20% : Dr0
wet�dryV� 1:47logðNDVIÞ � 0:85

20% < mvV25% : Dr0
wet�dryV� 1:79logðNDVIÞ � 0:79

25% < mvV30% : Dr0
wet�dryV� 2:03logðNDVIÞ � 0:71

mvz30% : Dr0
wet�dryz� 2:03logðNDVIÞ � 0:71

These soil moisture equations can then be used to estimate

soil moisture using microwave imagery (Drwet–dry
0 ) in wet
Fig. 7. NDVI and Drwet – dry
0 maps in two wet se
and dry seasons and optical imagery (NDVI) in wet

season.
4. Results and discussions

With NDVI from TM imagery in wet season and

Drwet–dry
0 from ERS-2 imagery in wet and dry seasons,

soil moisture can be estimated using the previously

developed regression equations. Fig. 7 is the NDVI and

Drwet – dry
0 imagery derived from TM/ERS-2 pairs in

summer monsoon and winter wet seasons. The dark spots

are cloud/shadow areas that have been masked out in the

analysis. The soil moisture maps in the study area are

shown in Fig. 8. Only a few pixels have soil moisture less

than or equal to 5% and therefore are not labeled. The soil

moisture map in summer monsoon season (DOY257) is

built upon NDVI (DOY255) and Dr257–187
0 . In most of the

study area the soil moisture is lower than 15%. Only in

some isolated areas is the moisture higher than 25% (Fig.

8a). The soil moisture map in winter wet season (DOY012)

is built upon NDVI (DOY015) and Dr012–082
0 . In most of

the area the moisture is higher than 15%. In areas downhill

or riverside, the moisture is higher than 25% (Fig. 8b).
asons (summer monsoon and winter wet).



Fig. 8. Soil moisture maps in two wet seasons (summer monsoon and winter wet).
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The soil moisture distribution in the study area is

consistent with weather conditions in these two seasons.

The precipitation is isolated short-duration thunderstorms in
summer monsoon and widespread snow or soaking rains in

winter wet season. Based on the weather information (Table

1), in September 1997, a small storm occurred prior to the
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ERS-2 overpass (DOY257), making some isolated areas

with high soil moisture. In early January 1997, it snowed

heavily and the snow had melted by the time of ERS-2

Overpass (DOY012). Thus, most of the study area, espe-

cially the alluvial fans, had high soil moisture values.

The simulated soil moisture values are also compared

with ground measured soil moisture in Fig. 6b. It is shown

that all sites with dry soil conditions, such as Creosote in

summer monsoon (3.8%) and winter wet (9.0%), and

Tobosa in summer monsoon (7.0%), are under or close to

mv = 10% isomoisture line. The measured mv at the Sacaton

site in winter wet season (28.2%) is right between the

modeled 25% and 30% isomoisture lines. The measured

mv at the Tobosa site in winter wet season (19.3%) is inside

the 95% confidence level of modeled 20% isomoisture line.

The only problematic site is Sacaton in summer monsoon

season. The measured mv at this site is 13.8%, but it is

highly above the modeled 35% isomoisture line. This

inconsistency is also shown in Fig. 5. One possible reason

is that the Sacaton site is in a relatively long and narrow area

close to the San Pedro River. The NDVI and Drwet–dry
0 may

be influenced by the mixed mesquites nearby and may not

represent the true value of the site where soil moisture was

measured. Except the Sacaton site in summer monsoon

season, the modeled soil moisture values fit the measured

ones very well.

Detailed surface conditions need to be considered to

further validate our results. The lower center of the
Fig. 9. Four ERS-2 r0 images of AOI: winter wet (DOY012), spring dry (DO
Dr257–187
0 image in Fig. 7 is an isolated area with a light-

tone feature, indicating high Drwet–dry
0 values in summer

monsoon season. It is not observed in other images. The

estimated soil moisture is high in both summer monsoon

and winter wet seasons. We define this area as our area of

interest (AOI) and detailed analysis is made over this AOI.

The AOI area was visited in April 2000. We found that it

was an area with different soil texture and roughness from

its adjacent areas. Although both the AOI and the adjacent

areas are part of alluvial fans, the soil inside AOI is brown

fine sandy loam with small portion of dispersed limestone

cobbles coming from Blakeney–Luckyhills complex of fan

alluvium (Soil Survey, 1996). The AOI surface is smooth

with a uniform gentle slope (3–5%), while the adjacent

areas are rougher with more gravel and cobbles. The

vegetation conditions are a little different, too. However,

from the land cover map in Fig. 1, both the AOI and

adjacent areas belong to grassland. Therefore, the vegetation

difference is neglected in model simulation.

Fig. 9 is the four ERS-2 images of our AOI: DOY012

(winter wet), DOY082 (spring dry), DOY 187 (end of

spring dry), and DOY257 (summer monsoon). The images

of the AOI in the dry seasons (DOY082, DOY187) are

darker than the adjacent areas because of the dry and

smoother soil. In winter wet season (DOY012), the snow

melting was widespread and the soil moisture was similarly

high between the AOI and the adjacent areas. Therefore,

the image inside the AOI has a similar tone with adjacent
Y082), end of spring dry (DOY187), and summer monsoon (DOY257).
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areas. In summer monsoon season (DOY257) however, the

rangeland was dominated by isolated thunderstorms. An

isolated thunderstorm may occur on the AOI and the

adjacent areas. Because soil texture of the AOI is more

capable of retaining moisture than the adjacent areas, the

high backscatter inside the AOI must be related to soil

moisture.

Similar conclusions can be made when the annual

changes of NDVI and r0 are plotted for the AOI (Fig.

10a) and the adjacent areas (Fig. 10b). The NDVI change

of AOI and the adjacent areas has a similar flow, indicating

similar vegetation conditions. The r0 change however, is

very different. In winter wet season, both areas are moist-

ened by snow melting so the backscatter is similarly high

(>� 10 dB) in the AOI and the adjacent areas. In spring

dry season, both areas are similarly dry, but SAR back-

scatter of the AOI is much lower than the adjacent areas

because the surface of AOI is smoother. In summer

monsoon season, radar backscatter of the AOI is higher

than the adjacent areas (about 2.2 dB). Considering the

similar vegetation conditions in both areas and smoother

surface of AOI, the high backscatter must be contributed

from soil moisture.
Fig. 10. Annual change of NDVI and r0 in 1997 for the AOI (a) and the

adjacent areas (b).
5. Conclusion

An ERS-2/TM synergy to estimate soil moisture in a

grass/shrub rangeland was investigated in this study. An

optical/microwave synergistic model was built to simulate

microwave backscattering on vegetated surfaces. Assuming

there was little annual change in surface roughness in the

semiarid rangelands, the effect of roughness was reduced by

subtraction of two ERS-2 images between wet and dry

seasons. Because NDVI values from optical TM data in

wet season was almost linearly related to vegetation abun-

dance when the vegetation density is not so high, we

examined the Drwet–dry
0 –NDVI relationships and built a

series of isomoisture equations to estimate soil moisture in

the study area.

Depending on the soil moisture contents, two Drwet–dry
0 –

NDVI trends were observed in the study area. When the soil

surface was dry (mv < 10%), vegetation contributed more

than soil in radar backscatter. Therefore, the backscatter

increment from increasing vegetation exceeded the soil

backscatter reduction due to vegetation attenuation. Thus,

Drwet – dry
0 increased with increasing NDVI. When soil

moisture was higher (mv>10%), the soil had more contribu-

tion than the vegetation. In this case, the attenuation on soil

backscatter exceeded the backscatter increment from vege-

tation. Thus, Drwet–dry
0 decreased with increasing NDVI.

The trends became less obvious when vegetation density

was high (NDVI>0.45), in which case the dominant back-

scatter was from vegetation and the soil information could

no longer be extracted.

The soil moisture in summer monsoon (DOY257) and

winter wet (DOY012) seasons was mapped with a series

of moisture intervals: < 10%, 10–15%, 15–20%, 20–

25%, 25–30%, and >30%. Although a thorough field

validation was not possible, the soil moisture distribution

was indirectly validated by examining the precipitation

characteristics in each wet season. In summer monsoon

season, most areas had a predominant low moisture value.

Only a few isolated areas had high moisture because of

the short duration thunderstorms. The moisture map in

winter wet season showed a large area of high moisture

value due to widespread snow melting. Further work need

to be done to conduct a more thorough validation with

controlled conditions.
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